Int. J. Solids Structures Vol. 32, No. 15, pp. 2257 2278, 1995
P Copyright « 1995 Elsevier Science Ltd
ergamon Printed in Great Britain. All rights reserved

0020-7683/95 $9.50 + .00
0020~-7683(94)002274

BOUNDARY ELEMENT METHOD FOR DYNAMIC
POROELASTIC AND THERMOELASTIC ANALYSES

J. CHEN® and G. F. DARGUSH
Department of Civil Engineering, State University of New York at Buffalo, Buffalo,
NY 14260, U.S.A.

(Received 9 September 1993 ; in revised form 7 September 1994)

Abstract—A boundary element method is developed for transient and time harmonic analysis of
problems in dynamic poroelasticity and generalized thermoelasticity, involving both two- and three-
dimensional geometries. Laplace domain infinite space fundamental solutions are employed to
produce a formulation that requires only surface discretization. Consequently, the resulting algo-
rithm provides an attractive alternative to existing volume-based methods, particularly for media
of infinite extent. Details of the formulation and numerical implementation are presented. Several
applications are included to validate the method and to emphasize certain aspects of the dynamic
theory.

INTRODUCTION

In recent years, there has been an increasing interest in physical phenomena that can be
modeled by the dynamic theories of poroelasticity and thermoelasticity. For example,
poroelastic analysis is applicable in seismology, foundation design, and in the study of wave
propagation in wet bones. Meanwhile, dynamic thermoelasticity is relevant for problems
in aerospace engineering involving high heat flux. More contemporary applications include
the areas of superconductivity and laser technology. Despite this diversity, the two theories
are completely analogous due to a common underlying thermodynamics. In a series of
remarkable papers, Biot developed the theoretical basis for both disciplines and established
the analogy.

The first model of dynamic poroelasticity, which pioneered the theory of wave propa-
gation in fluid-saturated porous media, was developed in an intuitive manner by Biot
(1956a,b; 1962a,b). Its essential correctness has been confirmed both from a two-scaled
analysis of the Navier—Stokes equations (Burridge and Keller, 1981) and from the viewpoint
of the theory of mixtures (Bowen, 1982). The theory has also been verified by experimental
observations (e.g. Plona, 1980).

Information concerning classical dynamic thermoelasticity can be found in the works
of Biot (1956¢), Chadwick (1960), and Nowacki (1975). Since the classical theory implies
an infinite propagation speed for thermoelastic disturbances, which is not acceptable from
a physical point of view, nonclassical (or generalized) thermoelastic theories (e.g. Lord and
Schulman, 1967 ; Green and Lindsay, 1972) aimed at eliminating the paradox have appeared
in the technical literature.

The complexity of the governing equations, which couple the behavior of a vector
displacement field with that of a scalar pressure (or temperature) field, precludes the
derivation of analytical solutions for all but the simplest of problems. More generally,
numerical methods must be employed. Domain-based approaches, particularly those
involving the finite element method, have been developed and applied with some success
(Zienkiewicz et al., 1980 ; Zienkiewicz and Shiomi, 1984 ; Prevost and Tao, 1983). However,
these problems invariably involve wave propagation, often in media of infinite extent. In
such cases, special techniques are required for wave front tracking and radiation boundary
condition specification. On the other hand, a boundary element approach could be very
attractive for these problems, at least for those involving piecewise homogeneous media.
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Initially the development of the boundary element method (BEM) for poroelasticity
was limited to quasistatic problems. Noteworthy publications include those by Cleary
(1977), Banerjee and Butterfield (1981), and Cheng and Liggett (1984). Time-domain,
boundary-only solutions were provided by Nishimura and Kobayashi (1989) and Dargush
and Banerjee (1989a). In the realm of dynamic poroelasticity, the BEM integral rep-
resentations presented by Predeleanu (1984) and Manolis and Beskos (1989) are written
as six equations with six unknowns (e.g. displacement of solid skeleton u; and average
displacement of fluid relative to the solid w;). The fundamental solutions for the above-
mentioned equations were obtained by Manolis and Beskos (1989) in the Laplace transform
domain and by Norris (1985) in the frequency domain. Unfortunately these formulations
are not satisfactory, since Bonnet (1987) and Boutin et al. (1987) have shown that only
four quantities (¢.g. solid displacements and fluid pressure) are independent variables for
poroelastic problems. More recently, Cheng and Badmus (1991) and Dominguez (1992)
developed frequency domain boundary element methods for dynamic poroelasticity in terms
of independent variables. Both papers contain numerical implementations and applications,
which are limited in scope to two-dimensional time-harmonic problems.

Time-domain BEM solutions to quasistatic thermoelastic problems were first provided
in Dargush and Banerjee (1989b; 1990). In the realm of classical dynamic thermoelasticity,
the well-known fundamental solution in the transform domain by Nowacki (1964) and the
reciprocal theorem by Ionescu-Cazimir (1964) have been available for a long time. On the
other hand, several authors (e.g. Sladek and Sladek, 1984) have written out various forms
of fundamental solution and integral representation for the classical theory, but no BEM
application has been reported to verify the validity of these formulations. Furthermore,
nothing has appeared concerning generalized thermoelasticity.

In the present work, a single BEM is developed for application to dynamic poro-
elasticity, classical thermoelasticity, and nonclassical thermoelasticity by extending the Biot
analogy. The resulting integral representation is written in the Laplace transform domain
in terms of independent variables. The numerical implementation utilizes a collocation-
based conforming element approach, featuring adaptive integration strategies. This permits
direct solution of time-harmonic problems in the frequency domain. More importantly,
with the application of a robust numerical inversion algorithm, accurate transient solutions
are obtained while maintaining a boundary-only formulation. It appears that this has not
been accomplished previously for dynamical problems in either poroelasticity or ther-
moelasticity. Furthermore, both two- and three-dimensional domains are considered
throughout.

The following section begins with a presentation of the governing differential equations
for the relevant poroelastic and thermoelastic theories. These equations are consolidated
into a generalized set by defining the poro-thermo analogy in the Laplace transform
domain. A boundary integral representation is developed directly from those equations by
employing infinite space fundamental solutions. Then, aspects of a numerical implemen-
tation are discussed. As noted above, this implementation permits the solution of transient
or time-harmonic problems, while requiring only surface discretization. The entire meth-
odology is validated through a series of numerical examples, including applications to
underground explosions and foundation impedance. For completeness, the required
Laplace domain kernel functions are detailed in the Appendix for the three-dimensional
case. Subscript notation is used throughout. Thus, summations are implied by repeated
subscripts, commas represent differentiation with respect to spatial coordinates, and a
superposed dot denotes a partial time derivative.

GOVERNING EQUATIONS

Dynamic poroelasticity
Biot’s equations governing the behavior of a poroelastic medium can be written,
following Zienkiewicz et al. (1980), in cartesian form:
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These represent the first and second constitutive relations, the momentum balance equa-
tions, generalized Darcy’s law, and the continuity equation, respectively. The subscript i,
j=1,2,3; g, is the total stress; p denotes the excessive fluid pore pressure (pressure is
taken as positive); u; is the displacement of the solid skeleton; w; denotes the average
displacements of the fluid relative to the solid; and 6 represents the increment of fluid
content. Additionally, the relationship between the fluid volume flux vector ¢; and average
velocity of fluid relative to the solid w; can be defined as g, = ;. The elastic constants 4 and
u are termed drained Lamé constants, k = k/# is the permeability coeflicient, while # and &
denote the fluid viscosity and the specific permeability, respectively. The quantities p, and
pr represent the solid and fluid density, while p = (1 —n)p,+ np; is the density of the solid—-
fluid mixture with » denoting porosity. Meanwhile, i/ and f; are the volumetric body source
rate and the body force, respectively. In addition x and Q are Biot’s parameters accounting
for compressibility in the two-phase material. The parameter m, appearing in the generalized
Darcy’s law, pertains to fluid inertial effects. Zienkiewicz and Shiomi (1984) set m = p;/n
due to a lack of experimental data to justify otherwise. Alternatively, homogenization
theory can be used to establish appropriate values for m or to define an equivalent frequency-
dependent permeability k (Auriault ef al., 1985).

It is not possible to rewrite eqn (1) in the time domain only in terms of the independent
variables », and p without increasing the order of the resulting differential equations.
However, the above task can be accomplished in the transform domain by first taking the
Laplace transform of eqn (1). After some further manipulation, the governing equations
representing the balance of momentum and mass can be written as

ﬂﬁi.//+(/i+H)a/:i_f_f’152'/7/'—95117.["‘.}?1 =0, (2a)

N ~
Cﬁw" éﬁ_izsai.,'+¢ = 0* (2b)

where Latin subscripts assume the values 1, 2, 3, the tilde denotes the Laplace trans-
formation, «, = x—ps{, 0, = a—pesl, p, = p—pis{,{ = (1/k+ms)” " and s is the Laplace
transform parameter. (Separate parameters «, and %, have been introduced in eqns (2a,b)
to represent the same function in order to extend the work to dynamic thermoelasticity.)
Notice that the effective permeability { is now a complex valued function of s (i.e. frequency-
dependent). Biot (1962a,b) suggested that several material parameters present in eqn (1)
should actually be replaced by integrodifferential operators. This can be readily accom-
modated in the Laplace transform domain form expressed in eqn (2). However, the difficulty
lies in determining the appropriate operators for a particular physical problem.

Dynamic thermoelasticity

In classical thermoelasticity theory, the displacement field is governed by a wave-type
equation (hyperbolic), while the temperature field is formulated on the principles of the
classical theory of heat conduction and, consequently, is governed by a diffusion type
equation (parabolic). As has been pointed out by many people (e.g. Vernotte, 1958), the
diffusion-type equation leads to an infinite propagation velocity for a finite thermal impulse,
a physically unacceptable situation. This behavior has provided reason to doubt the validity
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of Fourier’s law for initial value problems at short times. Thus, modified dynamic ther-
moelasticity theories have been proposed that involve hyperbolic-type heat transport equa-
tions and allow for so-called ‘second sound’ effects. In 1967, Lord and Shulman (L-S)
proposed a new theory by incorporating a flux rate with one relaxation time, 7, into
Fourier’s law. Through this relationship the temperature distribution is governed by a
partial differential equation of the hyperbolic type, and heat conduction will be described
as a wave propagation phenomenon. In 1972, Green and Lindsay (G-L), by introducing
two relaxation times 7, and 7, for the thermoelastic process, formulated an alternative
generalized theory of dynamic thermoelasticity with a second scalar wave, which is based
on an entropy production inequality. Contrary to L-S theory, the G-L theory does not
violate Fourier’s law when the solid has a center of symmetry.

One can write the basic equations for linearized thermoelasticity expressing, respec-
tively, the first constitutive relationship, the second constitutive relationship (for the
entropy), the equations of motion, Fourier’s law of heat conduction, and the linearized
entropy balance equation, as

0i; = b S+ p(u 4+ u) — B(T+1,T)6,, (3a)
ToS = BT+ (T+1, 1), (3b)
0,.,+ 1 = pii. (3¢c)

¢+10q = —KkT, (3d)

ToS+q: =, (3e)

where ¢, = pc, f = (344 2p)x,. 4 and u are the Lamé constants, u, o, Ty, T, q,, f, and ¥
are the displacement, stress, reference temperature, temperature difference, heat flux, body
force, and heat source, respectively. Meanwhile, p. f, 2. k, ¢,, and ¢ are the density, stress—
temperature modulus, the coefficient of linear volume expansion, conductivity, specific heat
at constant strain, and specific heat referred to the unit mass of the body, respectively. The
quantity S is the entropy per unit volume and unit time.

The relaxation parameters t,, 7,, T, govern various dynamic thermoelastic models.
When 1, = 7, = 1, = 0, eqns (3) reduce to the Classical Theory (Nowacki, 1986). When
only 7, =1, =0, eqns (3) reduce to the L-S theory (Lord and Shulman, 1967), where
Fourier’s law of heat conduction, eqn (3d), is modified by the introduction of the relaxation
time 1o, which represents a finite building time for the onset of a heat flow after a temperature
gradient is suddenly applied. Conversely, if a thermal gradient is suddenly removed, there
is a lag in the disappearence of the heat flow. When only 7, = 0, eqns (3) reduce to the G-
L theory (Green and Lindsay, 1972). where two relaxation times t,, 7, are introduced by
modifying the Duhamel-Neumann relationships (3a) and the entropy density relationships
(3b).

Eliminating 7,S and ¢, from eqns (3b.d.e) and g, from eqns (3a,c), we obtain the
following motion and energy equations in the time domain :

uu,-‘,,—l— (/“ +u)u,-_/, —[)lj,- - :H( T! +71 TI) +/1 = O, (43)
kT, — T+ (o +1)T)Y =BT, (i, + 1ot ) +1p = 0. (4b)

Application of the Laplace transform to eqns (4a,b) yields

M i+ (/1+u)ﬁ,_,~,~p5211,~/f(1 +1,5) f/ +j;' =0, (5a)
‘T L2 T BTosa, +§ = 0 5b)
ed G I+ 105 5 BTysi, ;+y =0, (

where



Dynamic poroelastic and thermoelastic analyses 2261

K
147148

s

Gt =

Poro—thermo analogy

As first indicated by Biot (1956c), the processes involved in poroelastic and ther-
moelastic deformation have much in common, from a thermodynamic standpoint. This is
manifested in the similarity of eqns (1) and (3) in the time domain, and (2) and (5) in the
transform domain. Comparison of the latter set, involving independent variables, is most
relevant for our development. With that in mind, we construct the following set of coupled
differential equations governing the dynamic behavior of poroelastic and thermoelastic
media:

pili 4+ (A+ i, —p 820 —,0,4+7 =0, (6a)

~ 1 . .
{©;— A_45®_°‘25ﬁ/.i+‘// =0, (6b)

in the Laplace transform domain. In the above, #; represents the displacement, while B is
the excess pore pressure in poroelasticity or the _temperature difference in thermoelasticity.
Additionally, A and x are the Lamé constants, f; and ¥ represent body forces and sources,
respectively. The remaining parameters are defined as follows:

1

. ) 7
" T Uk+ms’ (72)
pr = p—pist. (7b)
o, = a(l+1,5)— pst, (7c)
oy = aTo—pesi, (7d)
1 1+1,s
o . 7
o 0 (7e)

For poroelasticity, k, p;, p, and n are the permeability, fluid density, two-phase material
density, and porosity, respectively, with m = p/n as in Zienkiewicz and Shiomi (1984). The
remaining active parameters o and Q account for the compressibility of the two-phase
material. The dummy parameters 1,, 1., and T, assume the values 0, 0, and 1, respectively.
Consequently, a; = o, and M = Q.

Meanwhile, in thermoelasticity, , p, Ty, c¢. and «, represent the thermal conductivity,
density, reference temperature, specific heat at constant strain, and the coefficient of thermal
expansion, respectively, with @ = 1/c, and o = (34A+2u)a,. The inactive parameter p; = 0.
For classical thermoelasticity theory, there are no relaxation times. Therefore, the par-
ameters 7, and 7,, along with m, are all zero. The Lord-Schulman theory contains one
relaxation time 7, where m = 1,/k. Once again 7, and 1, are zero. Finally, in the Green—
Lindsay theory the relaxation times 1, and 1, are active, while m = 0. The complete analogy
is summarized in Table 1.

Boundary integral representation
Let B,, represent the transformed differential operator specified in eqn (6) with Greek
indices assuming values 1,2.3,4. With this notation, eqn (6) can be rewritten

B, +f, =0, ®)

in which
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Table 1. Poroelastic—thermoelastic analogy in Laplace transform domain

Poroelasticity Classical theory L-S theory G-L theory

i i; i; u;

yii T T A

61/ (7~”. 5‘/ 61/

g 7 a

{) TQS TQS 7y

7 J J J

W W ¥ W

at B B B(1+115)
af BT, BT, BT,

K K K K

i A y; p)

I 2 u ©

p P P P

o 0.0 0.0 0.0

m 0.0 To/K 0.0
1/Q ¢, c, c.(141,8)

+In equation of motion, i.e. o = «,.
tIn energy equation, i.e. ¢ = o,.
a, = (@, i, 4, 0)", (%)
f: = (fl a/’Z a‘f3! lp)T (9b)

Furthermore, let G},;(x,é;s) and G;,(,x,g’;a') represent the corresponding fundamental
solution and adjoint fundamental solution, respectively, implying that

B.,,J(Gd/; + 5#;6()(_ é) = O, (l()a)
BxGE+6,56(x—&) =0, (10b)

with Kronecker delta function J,,, Dirac delta function 6(x—¢), and B*, as the adjoint

~

e ~ %
G:[ = —Giﬁu Gi4 -

differential operator. In three dimensions, one finds that G¥ = G,
~G,,and G3y = Gy,

A set of integral equations for the generalized theory can then be derived in a direct
manner by equating the inner product of eqn (8) and G% to a null vector, i.e.

v

where the integration is performed over the volume V. This essentially forces the error
associated with the satisfaction of the governing differential equations to be orthogonal to
G~2},. Next, integration by parts is performed on the individual terms within the inner
product to transfer all derivatives from 4, to G ¥:. The result can be written

j (A — o, @)nz +uld: ;+ i@, ;)'Z;]Gi’;’ dsS(x) *J ﬁf[(/léfﬁ.k + O‘zSGfﬁ)’?f + ﬂ(éﬁi../
s s

+G”;;,_,.)n,]d5(x)+fa:[ﬁjn,.c?z/,—éézﬂ_/,n,]dS(xH J (+a,BE)GydV(x) =0, (12)
y

RY

in which #; represents the outer normal to the bounding surface S. This can be simplified
considerably by introducing surface tractions 7;and normal flux § for the generalized theory,
where
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i = [l — (1 +7,5)8)3,, + uldi,,+ 7, ), (13a)
g = —{(O® ;4 psi)n;. (13b)

These expressions are valid for both poroelasticity and thermoelasticity. After neglecting
body forces f, and using eqns (10b) and (13), eqn (12) reduces to the following form:

Cop(O)(E,5) = L[G~ (0, E1 9L (x, ) — Fly(x. &9, (x, 5)] dS (x), (14)
where
FA =[0Gk, —aTosGin + (G, + G ond, (15a)
= — UG+ pisG )y, (15b)
and
fo= (5L, (16)

The matrix C,; depends only upon the local geometry at ¢, and reduces to a generalized
delta function 9,; for ¢ inside S and to %51/; for ¢ on a smooth portion of the boundary
surface. The kernel functions, G% and F*%;, required in eqn (14) are detailed in the Appendix
for three-dimensional problems. The corresponding explicit form of the two-dimensional
kernels can be found in Chen (1992), along with additional details concerning the derivation
of the integral representation.

The kernels in eqn (14) are developed directly from Laplace domain infinite space
Green’s functions for Biot’s complete dynamic poroelastic theory. The technique used for
derivation is much the same as that employed by Boutin ef al. (1987) for their frequency-
domain solution. We include nothing here about the detailed derivation, which is discussed
at length in Chen (1992). However, it should be noted that in various limiting cases, these
solutions properly reduce to those of classical elastodynamics and steady-state poro-
clasticity. Furthermore, examination of G ¥, in the Appendix reveals that for displacements
generated by a unit force there are two compressional waves P, and P, and one shear wave
S. The displacements are cylindrically symmetric around the direction of the force in the 3-
D case and only plane symmetrical around that direction in the 2-D case. The contribution
of the S-wave in the pressure response due to a point force is obviously zero. Also there is
no shear wave in the fields of displacement and pressure, which are radiated by a fluid point
source. These fields present a spherical symmetry for 3-D and a radial symmetry for 2-D
cases centered on the fluid point source. In the corresponding frequency domain, 4, and 4,
are the wave numbers of the slow compressional waves and fast compressional waves,
respectively, while 4, represents the wave number of the shear waves.

It should also be noted that these kernels can be decomposed in the following manner :

G;k/f(xs £58) = Gup(x, &) Jf‘g;kﬂ(-’(. &), (17a)
Fy(x.&55) = Fp(x. )+ %(x. & 25), (17b)

where G,4(x, &) and F,(x, &) are the time-independent steady-state poroelastic (or ther-
moelastic) kernels defined in Dargush and Banerjee (1989a ; 1990). The steady-state three-
dimensional kernels exhibit singular behavior as indicated below (Dargush, 1987) :

1
lim G (v, €) o~ (18a)

liin;GA,»(x. ¢) oc constant, (18b)

SAS 32-15-9
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liﬁ G.4(x, &) oc constant, (18¢c)
. 1
I Gau(x, &) o -, (184)
) 1
hn‘éFi}'(xs é) oC—, (193.)
X — r-
. 1
li_I:I}FM (x, &) oc constant, (19¢)
. 1
limFyu(x. &)oc —, (19d)
=< r2

with analogous behavior associated with the two-dimensional counterparts. However, the
remaining portions of the kernels, denoted by g¥(x, &;s) and f3(x, ¢ ;s) in eqn (17), are
completely nonsingular as x — &,

NUMERICAL IMPLEMENTATION

In order to employ the integral formulation developed in the previous section for the
solution of all but the most elementary problems, discretization of eqn (14) must be
introduced in both time and space. Consider first the temporal representation utilized for
analysis of time-harmonic and general transient behavior. For the time-harmonic case, one
simply sets the Laplace transform parameter s = iw, where 1 is the imaginary unit and w is
the circular frequency of the applied boundary conditions. As a result, the kernel functions
G ¥(x, &5 w) and F ¥ (x, &; w) are explicitly defined complex quantities, while #,(x, w) and
I(x, ) represent the generalized displacement and traction complex amplitudes, respec-
tively.

There are at least two approaches available for general transient analysis. In the first
approach, the Laplace inverse transform of eqn (14) is obtained directly, and then the
kernels are evaluated by performing a numerical inverse Laplace transform. This is a
computationally intensive approach, since the numerical inversion must be performed at
each field point (¢)-load point (x) pair. Moreover, the evaluation must be done carefully
owing to the character of the kernel functions. On the other hand, with this methodology,
the formulation can be employed for problems involving temporal changes in boundary
condition types (e.g. from imposed displacement to applied traction conditions) and can
be extended quite naturally to examine nonlinear phenomena.

The second approach involves solution of the boundary integral equations in the
transform domain. Time-dependent boundary conditions are first transformed to the
Laplace domain, the equations are solved independently at each of a series of values of the
complex transform parameter s, and then finally the boundary solutions are transformed
back to the time domain via a numerical inverse transform. This, in fact, is the usual
approach taken in the boundary element literature when employing Laplace domain kernels
[see e.g. Cruse and Rizzo (1968) ; Manolis and Beskos (1981) ; Cheng and Liggett (1984)],
and is also adopted in the present work. The actual numerical implementation, detailed
below, represents an extension of that developed by Banerjee and Ahmad (1985) for
elastodynamics.

In the initial phase, boundary conditions specified in the time domain are transformed
into Laplace-domain form by employing exact formulas for piecewise linear functions of
time
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F,—F
F(1)=F,_, +(—"Eg(r—rn,l), fort, , <t<1,;n=12,...,N, 20)
where
F, = F(1,), (21a)
T, = nAt. (21b)

Utilizing eqn (20) in the definition of the Laplace transform

£(s) = r F(t)e—"dr, 22)

—

produces the required result,

N

Fs) = Z] s2AT

(E,—F, e —e "] 4sAtlF, e —Fe . (23)

This formula is used to calculate the quantities 7,(x, s) and @,(x, ), appearing in eqn (14),
that correspond to the specified boundary conditions.

Of course, the question remains as to the appropriate values of s at which the integral
equations are to be written. These values are determined through the selection of an
algorithm for Laplace transform inversion. The present work uses the Fast Laplace Inverse
Transform (FLIT) method of Durbin (1974), which combines Fourier cosine and sine
transforms to reduce numerical error. This formulation yields time-domain functional
values

nfiAt N—1
F(1,) = [—%Re {F(s0)} +Re { Y (A“k+iEk)W"kH forn=0,1,....N—1 (24)
N k=0
where
~ L ~
A, = Z Re{F(Sk+IN)}s (25a)
I=0
~ L ~
B, = Z Im{F(SkHN)}’ (25b)
1=0
W = e27u//'\” (25C)
Sm = B+ 2mim/ty, (25d)

with the real constant § = 6/7, based upon experience and the recommendation of Durbin
(1974). Evaluation of the bracketed terms in eqn (24) is accomplished through the use of
the Fast Fourier Transform (Cooley and Tukey, 1965). In order to minimize the Gibbs
phenomena near discontinuities, Lanczos ¢ factors are included (Lanczos, 1956).

Notice that from eqns (24) and (25), the determination of F(t,) forn =0,1,... ,N—1
depends upon the values of F(s,) for m =0,1,...,M—1 where M = N (L+1). Conse-
quently, the boundary integral equations

Ca/ﬁ(é)az (éa Sm) = '[ [GA‘:‘B(XS é ;Sm)fz (-xs Sm) —F';"/;(x, é > Sm)ﬁot(x’ Sm)] dS (X) (26)

N

must be solved independently at each of the M discrete values s, of the transform
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parameters. In the current implementation, L = 0 to minimize the computational effort for
a given number of output time steps N. However, additional accuracy can be obtained for
the numerical inversion by increasing L.

In order to solve eqn (26) for the unknown generalized displacements and tractions,
some form of spatial discretization must be introduced. Quadratic boundary elements are
utilized to describe the geometry of the surface, while i, and 7, may have a linear, quadratic,
or quartic variation specified within each element. A fully conforming approach is taken in
order to maintain interelement continuity of generalized displacements. However, applied
generalized tractions may be discontinuous.

Spatial collocation is then used to develop a system of algebraic equations. In the
process, the discretized form of eqn (26) is written at each functional node. The integration
is performed numerically by invoking self-adaptive schemes to ensure both accuracy and
efficiency. Strongly singular blocks of F,; identified in eqns (19) are evaluated indirectly
with a generalization of the rigid body technique (Cruse, 1974 ; Dargush and Banerjee,
1989a). The resulting system of equations can be written in matrix form

[Gm] {fm} — [Fm] {um} (27)
or finally, after applying the specified boundary conditions,
[Am] {xm} — {bm} s (28)

where [4™] is a square, nonsymmetric complex matrix and once againm =0,1,..., M —1.
After all of the vectors {x™} are determined, the desired time-domain solutions are syn-
thesized by employing the FLIT algorithm defined in eqn (24).

Finally, it should be noted that since this entire dynamic poroelastic/thermoelastic
formulation was implemented in the general purpose code, GPBEST, a wide range of
additional facilities is available, including multiple material regions, sliding interfaces, dis-
placement discontinuities, and convection boundary conditions. However, the numerical
applications considered below are intended to illustrate some of the basic phenomena
associated with the dynamic theories. More elaborate applications will be examined else-
where.

POROELASTIC APPLICATIONS

Transient load on surface of half-space

The first problem addressed concerns plane strain step loading applied uniformly to
the surface of a half-space. Simon er al. (1984) presented a solution for the same problem
where the materials are dynamically compatible. The loading boundary conditions for this
test problem include a step total stress, o = g,H (¢), and free fluid flow, p = 0, at the top
surface of the half-space.

A representative strip, one unit wide and ten units deep, is isolated for the boundary
element analysis and discretized with a total of fifty quadratic surface elements. The depth
is sufficient to ensure that no waves are reflected by the lower boundary within the solution
times of interest. Alternatively, enclosing elements could be employed (Ahmad and Baner-
jee, 1988).

For the three kinds of dynamically compatible material considered in this example,
the reader is referred to Simon er a/. (1984). Nondimensional material parameters are
defined by

A

At 2u+22Q’

Vi

[ - ,—./l -
A+2u+alQ’
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oo O
A+2u+22Q
pr =1,
pf*=p—f,
p
m* = —
k*=1

and set as follows: material No. 1 k* = 1.0 A* = 0.006751 u* =0.01013 Q* = 0.973
p* =1.0 pF=0973 n = 0.333 a = 1.0; material No. 2 x* = 1.0 i* = 0.0878 p* = 0.1317
Q* =1.459 p* =1.0 p¥=0.973 n = 0.333 o = 0.667 ; material No. 3 k* = 1.0 A* = 0.169
u* =0.25350% =2922 p* = 1.0 p¥= 0973 n = 0.333 o = 0.333.

No shear waves exist for this one-dimensional problem. However, waves of the first
and second kind are present (i.e. two dilatational waves). The faster waves of the first kind
are an undamped disturbance traveling at nondimensional speed v, and the slower waves
of the second kind are a damped disturbance traveling at nondimensional speed v,. The
propagation speeds of the two dilatation waves are summarized as: material No. 1 v, =1,
v, = 0.1153; material No. 2 ¢, = 1, v, = 0.5092 ; material No. 3 v, =1, 0, = 1.

The displacements of the solid at the surface are shown in Fig. 1 plotted against
the time parameter 7 = 7/(pk) for the three material cases (No. 1, No. 2, and No. 3).
Nondimensional scale for displacements is used, 1ie.  uV./(xg,), where
Ve = J(A+2u+2>Q)/p. The plots for the surface displacement suggest a ‘creep’ effect due
to losses associated with relative fluid motion. (The displacement response in a single-phase
elastic medium is linear with time.) Figure 2(a) shows the pore pressure at a depth & = 1.0
versus 7 for material No. 2, while the total stress at that location is plotted in Fig. 2(b).
Very good agreement is observed between BEM and analytical solutions. In particular, the
arrival of the two waves is captured quite well, as indicated in Fig. 2(a).

Explosion in a spherical cavity

For the second example, consider an infinite three-dimensional poroelastic medium
containing a spherical cavity of radius R. (The corresponding two-dimensional cylindrical
cavity response is studied in detail in Chen, 1992). Nondimensional spatial and temporal
scales are introduced by defining & = r/R and © = 1(u/p)' /R, respectively. The poroelastic

30 —— Analytical Solution

o BEM Material 1
25 { + BEM Materiai2
+ BEM Material 3

20 1

15

u(0, f)V;/(KUD)

10

0 2 4 6 8 10
T =t/px
Fig. 1. Transient load on surface of half-space— surface displacement.
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)]

———— Anaiytical Solution
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0.0 oo

0.2 1
0.4 1 ‘L
0.6

o/ao

T=1t/px
Fig. 2. Transient load on surface of half-space—response for material No. 2. (a) Pore pressure,
(b) total stress.

material properties are also nondimensionalized, and specified as follows: u* = 1, 1* = 2,
p¥=1, p¥=05, O* =23, m*=1.25, b*=16, «=0.984 with i* = A/u, p¥= pi/p.
Q* = Q/u,m* = p¥n, and b* = nR/(k*pp)"”. The cavity surface is subjected to a uniform
pressure, p,, applied suddenly at time zero and subsequently maintained at that level.

In the boundary element analysis of this problem, discretization is required for only
the surface of the cavity. Additionally, due to symmetry, modeling can be confined to just
the positive octant of that surface. Two levels of mesh refinement are considered, involving
three and twelve nine-noded Lagrangian elements, respectively. Analysis is conducted for
nondimensional time steps At = 0.2 and At = 0.1 in order to investigate convergence
characteristics. In each case, fifty values of the transform parameter are utilized, and a
permeable cavity surface is assumed. The resulting radial displacement of the cavity surface
at £ = 1 is plotted versus time in Fig. 3. It is evident that very good convergence has been
obtained, and that even a simple three-element model produces the proper response.

Comparison of the poroelastic behavior with that of a single-phase elastic medium is
presented in Fig. 4. Results for both permeable and impermeable hydraulic boundaries are
included. The properties for the elastic media are taken to correspond to the fully drained
case. Thus, y* = 1, A* = 2, and p* = 1. The required elastic kernel functtons are well known
(Eringen and Suhubi, 1975), but can also be obtained as a limiting form of the present
poroelastic kernels (Chen, 1992). Since an analytical solution is available for the elastic
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Fig. 3. Explosion in a spherical cavity—convergence study for cavity surface displacement.
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Fig. 4. Explosion in a spherical cavity—cavity surface displacement under permeable and imper-
meable conditions.

case, this is also shown in Fig. 4 to illustrate the accuracy of the underlying boundary
element methodology. All three of the BEM response curves were obtained for the twelve-
element model with At = 0.2. It is evident from the figure that while the general shape of
the time-history response is similar for both the poroelastic and elastic media, the peak
displacements are significantly greater in the two-phase material, particularly when the
surface of the cavity is impermeable. Notice also that the peak is somewhat delayed
compared to the single-phase elastic response.

Vertical impedance of a square footing
The final poroelastic application involves a time-harmonic analysis of a rigid, smooth,
massless square plate with length dimension 2a vibrating on the surface of a poroelastic
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"o

Fig. 5. Vertical impedance of a square footing—boundary element model.

half-space. Once again dimensionless spatial and temporal scales are introduced such that
x}= x,/aand af = wa (p/u)""?, where w is the circular frequency of the plate vibration. The
nondimensional material properties of the poroelastic medium are u* =1, 4* =2, p* =1,
pF=04,0*=10,k*=1.0,7* = 1.0,n = 0.3, and « = 0.9. The corresponding elastic case
has been investigated by Wong and Luco (1976) and Ahmad (1986).

Figure 5 depicts the boundary element model employed for the analysis with quarter
symmetry assumed. A total of ten elements are used, all on the surface of the half-space,
which is assumed to be permeable. A unit vertical displacement amplitude is applied over
the surface of the plate, and the problem is solved for a range of frequencies. At each
frequency, the resulting vertical tractions under the plate are integrated numerically to
determine the vertical impedance of the footing. Results for the real and imaginary com-
ponents of the impedance are shown in Fig. 6. Values obtained, using both quadratic and
quartic functional variation within each element, are provided. Excellent convergence is
evident at lower frequencies, while some differences appear at the higher end, due primarily
to the crudeness of the quadratic representation.

The quartic element model is then used to examine the effects of soil permeability.
Four values of k* ranging from 0.01 to 10,000. were examined with the real and imaginary
impedances provided in Fig. 7. From these curves, it is clear that permeability can have a
significant impact on the response. A more detailed parametric study of the square footing,
along with other typical foundation designs, is currently underway.

THERMOELASTIC APPLICATION

Half-space subjected to a step surface heating

As an illustrative numerical example of dynamic thermoelasticity, we consider the first
Danilovskaya (1950) problem of classical thermoelasticity. A half-space (x > 0), with
boundary x = 0 is assumed initially to be at rest and to have zero temperature. At time
t =07, the traction-free boundary of the half-space is subjected to a step temperature
0,H (1), which remains constant thereafter. It is convenient to introduce the usual dimen-
sionless variables as follows:

. o~ T K ¢ g, A+ 2u)u,
é':— T=— 1=— — §G. =—2 1]':;*( 'u)
0, ’ y .8,

£l

a

where
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Fig. 6. Vertical impedance of a square footing—convergence study. (a) Real component of imped-
ance, (b) imaginary component of impedance.

1 x A+2u
a=—— Q = —_.
¢ pe )

As proposed in Boley and Weiner (1960), the thermomechanical coupling parameter is

_ 712 T,
pc(A+2p)°

All calculations reported were performed with the material constants selected as
follows:
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Fig. 7. Vertical impedance of a square footing—effects of soil permeability. (a) Real component of
impedance, (b) imaginary component of impedance.

B=334x10"kgK'cm™'s7?,
A+2u=199%x10°kgem~'s 2,
p=782x10"*kgem™?,
c=4.61x10°cm>K~"s7?,
k=170x10 kgemK!s?,

to correspond to the properties of stainless steel. The boundary element representation of
the problem geometry is identical to that utilized in the first poroelastic example.
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Fig. 8. Half-space subjected to a step surface heating (classical theory). (a) Temperature response,
(b) displacement response.

Figure 8 depicts the time histories of the dimensionless temperature and displacement
at a particular point. The point chosen, ¢ = 1.0, is the location of the elastic wave front at
the nondimensional time t = 1.0. In these figures the analytical solutions for the uncoupled
problem obtained by Sternberg and Chakravorty (1959) via Laplace transform are also
presented. The present BEM solution shows good agreement with the analytical result. An
analytical solution for the coupled problem is unavailable in the literature. In these figures,
the coupled results are presented for 6 = 0.36 and ¢ = 1.0 for illustrative purposes only.
These values are unrealistically high for the material of interest.

A point of interest is the distribution of temperature shown in Fig. 8. The effect of
strong coupling is to accelerate thermal diffusion ahead of the wave front and decelerate it
behind the front. This is so, since the conversion of thermal and mechanical energy is most
likely to take place predominantly at or near the wave front. In fact, the BEM results
obtained indicate that a negative temperature gradient is generated ahead of the wave for
strong coupling. As can be inferred from the plots, the temperature distribution behind the
wave front asymptotically approaches the uncoupled solution with increasing time.

Figures 9 and 10 provide the results for the same problem using L-S and G-L theories,
respectively. In Fig. 9, the nondimensional relaxation time 7, = 2. As a result, for the



2274 J. Chen and G. F. Dargush

(a) 1.0
——— Uncoupied (BEM)
09 4 e Coupled (BEM; 5 =0.05)
—-—- Coupled (BEM; & «0.38)
08 1 —— comedieem: 5 «10)
° 0.7
3 06 1
5
g 0.5 1
§ 0.4 -
0.3 1
0.2 1
0.1
0.0 . " v . .
0.0 0.5 1.0 15 2.0 25 3.0
T
(b) 0.4
0.3 1
fé 0.2 1
§ o1
=
& o0
a
= -0.1
k]
< 02 | ————  Uncoupled (BEM)
------- Coupled (BEM; ; =0.05)
-0.3 - === Coupied (BEM; § =0.36)
——~— Coupied (BEM; § =1.0)
-0.4 —r T r v
0.0 0.5 1.0 1.5 2.0 2.5 3.0

T

Fig. 9. Half-space subjected to a step surface heating (Lord—Shulman theory). (a) Temperature
response, (b) displacement response.

uncoupled case, the elastic wave front propagates with a velocity equal to one and the
thermal wave front propagates with a velocity of 1/\/5. Due to the one-way coupling, the
fast elastic wave does not cause a sudden rise in temperature at its arrival time t = 1.0.
However, we find that there are two dramatic changes in temperature in coupled cases due
to the arrival of both the elastic and thermal waves. In all cases, the displacement response
is much more gradual.

For the G-L theory analysis, the two relaxation times 7, and t, were both set equal to
a nondimensional value of 2.25. While the temperature response in Fig. 10(a) is quite
similar to that obtained for the LS theory, significant differences appear in the displacement
time history. In particular, under G-L theory, sudden dramatic changes in displacement
are associated with the arrival of the elastic and thermal waves. Clearly, the introduction
of relaxation times in thermoelastic theories can significantly alter response.

For this example, nondimensional units were employed to establish the coupling and
relaxation characteristics. While this is useful in distinguishing the various theories and in
validating the implementations, it is also somewhat misleading. In particular, by introducing
more realistic values for these parameters, one finds that the dynamic theory of ther-
moelasticity and second sound effects are important only under exceptional circumstances.
For example, in a metal at room temperature, the characteristic times for heat conduction
and elastic shear wave propagation can be written as
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Fig. 10. Half-space subjected to a step surface heating (Green—Lindsay theory). (a) Temperature
response, (b) displacement response.

pcl?

Ty =

respectively. Those two times are comparable only over very small distances L of the order
of 10~ m. The corresponding time scale is measured in picoseconds. Consequently, for
most applications the classical theory, along with a quasistatic approximation, is adequate.
Boundary element methods for that theory have been presented previously (Dargush and
Banerjee, 1989b; 1990).

However, it should be noted that second sound effects have been detected in solids

at low temperatures. Furthermore, the dynamic theory considered here may have some
significance in superconductors and for applications involving lasers with extremely short
pulses. The latter situation was considered in some detail by Hector e al. (1992), in which
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the authors examined the temperature distribution in a material modeled with a hyperbolic
constitutive law subjected to irradiation by a mode-locked laser.

CONCLUSIONS

In the present work, the analogy between dynamic poroelasticity and generalized
thermoelasticity was exploited for the development of a single boundary element for-
mulation appropriate to both theories. The resulting formulation is applicable to transient
and time-harmonic problems involving both two- and three-dimensional domains. The
integral representation is derived directly from the governing differential equations in the
Laplace domain. By utilizing the infinite space adjoint fundamental solution, a boundary-
only formulation is obtained, thus eliminating the need for volume discretization for the
analysis of piecewise homogeneous media, with zero body forces and initial conditions.

While the resulting integral equations are exact statements, both temporal and spatial
discretization are required for the solution of practical problems. Two approaches are
briefly discussed for the representation in time. In the first approach, the integral equations
and kernel functions are transformed from the Laplace domain to the time domain.
Although this method is computationally intensive at the kernel level, it does permit analysis
of nonlinear phenomena. For the second approach, the equations are solved in the Laplace
domain, and then the solutions are transformed to the time domain. Only this latter
approach is implemented, since the interest here is limited to linear analysis. State-of-the-
art boundary element methodology is employed for the spatial discretization and numerical
integration in order to provide accurate solutions.

Numerical examples are used to validate the implementation and to explore the
dynamic behavior of media governed by these theories. In all cases, detailed convergence
studies establish the self-consistency of the methodology and provide the basis for mesh
and time step selection. The poroelastic applications, particularly those involving the
investigation of an underground explosion and the calculation of foundation impedances,
indicate that the presence of an interstitial fluid can have a significant effect on the response.
Additionally, in the thermoelastic application, BEM results correlate well with a known
analytical solution. Further applications of the present boundary element method for both
poroelasticity and thermoelasticity are currently underway.
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APPENDIX: THREE-DIMENSIONAL KERNELS
The Appendix details the kernel functions CT:‘,; and F% that appear in the boundary integral representation
for dynamic poroelasticity and thermoelasticity. Latin subscripts vary from 1 to 3, while Greek subscripts assume

values from | to 4.
Then, for the generalized displacement kernel,

d .
G [ V/ r]+ _[_{ l} 1+/1|r)+b1/()lr )}Czeillr {au(1+12r)+bu(1%r2)}cl e’

~{a,; (14 23r) +b,,(A3r)} e )

. dy
G;:—z[dz(lﬂ,r)} e+ {z,(1+ 2,1} e~ ]
r
~ d
Gh=— EG
GY = —"[—ce " +e,e7h)
where
vi=xi—& P =yy, z = yfr
2 2
K% 48 A% _ 8
A+2u ) "
. N A0S s
242 = - 22 =
AL+ Ay K1+MC+S(/1+2H) 2 Kle
1
do=—— d = dy=——
4 anp,s* An(i+ 2 (3} - 23)
oy 1
4= (57)e “
(h? /f) (K?-/I%)
¢ = ¢ =
23 f B—A
= b, =1zz

Meanwhile, the generalized traction kernel can be written

[(2(71:‘[3}( aT,sG, BN +#(GnﬁA kﬂz)nk]

S

F

%

= — UG+ psGln,

with », representing the unit outer normal. The explicit form of the derivatives are defined as follows:
. d ..
Gy = [‘I/,k(l +A;r)e? = = [_ {guk(l + A r) 4+ b (A7) +puk(/1?’3)}52 el + {guk(] +4,7)
+ e (2ar) (e ey e = {g (L + A1) + R (A3r7) + pj (A3r*) e ]

- d , ‘ . :
Gt =— —32[—{a,k(1+;.lr)+bik(;.;r2)} e a1+ 220 + by (A3rh)} ]
r

~ d . ) )
Gl = — —[={za(+ian}e e +{z(1+i}e, e
r

in which
Gipx = 1522,z — 32,6, — 32,00, — 32,0,
hijp = — 2,0 — 2,64, — 240, + 62,2,2,
Pijk = ZiZi2k
Gije = Zi 0y

The corresponding two-dimensional kernels can be found in Chen (1992).



